Biotech International: Scientists pry new information from disease-causing, shellfish-borne bacterium Hospital devices Medical devices

The online source of technology & product information for life scientist & bioentrepreneurs

E-newsflash: Details

Scientists pry new information from disease-causing, shellfish-borne bacterium



Researchers at UT Southwestern Medical Center have uncovered a key weapon in the molecular arsenal the infectious bacterium Vibrio parahaemolyticus (Vpara) uses to kill cells and cause food poisoning in viagra online its human host.

DrKim Orth, associate professor of molecular biology at UT Southwestern, said the new research on the ocean-dwelling bacterium is leading to greater insights into how it causes illness in humans while also providing a potential novel scientific tool for cheap generic viagra studying general cell biology in the laboratory

DrOrth and her team found that the cialis online bacterial molecule VPA0450 plucks a group of buy cialis online atoms called a phosphate from a larger molecule in a host cell that is critical to viagra online holding the cell togetherWithout that phosphate, the host-cell membrane failsThe cell loses integrity and is efficiently destroyed during infection.

"From a microbiology point of view, understanding how VPA0450 manipulates a host cell is critical to understanding how Vpara causes disease," said Chris Broberg, a UT Southwestern student in the buy tramadol online molecular microbiology graduate program and lead author of the study.

DrOrth and viagra online canadian pharmacy her colleagues previously identified two other Vibrio proteins called VopQ and VopS, which also attack host cells via separate mechanismsShe said the cialis online new findings reinforce the notion that Vpara kills a host cell through the viagra online without prescription combined efforts of several so-called effector proteins working together rather than through the actions of a single protein.

"In order to understand better the disease this bacterium causes, we need to characterise each effector’s activity, then determine how they work in concert," DrOrth said"This latest paper puts our field closer to this goal.

Most people become infected by Vpara by eating raw or undercooked shellfish, particularly oysters, according to the Centers for Disease Control and online pharmacy cheap PreventionThe organism also can cause an infection in the discount viagra skin when an open wound is exposed to warm sea water.

DrOrth’s research on Vpara proteins has potential applications in viagra online other areas of cell biologyThe particular phosphate that VPA0450 removes also is important to real viagra other host-cell proteins that control certain communication signals within and between cells, signals related to how cells grow and move, as well as how they maintain their structural integrityAs such, exploiting VPA0450’s unique abilities could prove to be a useful research tool"Scientists have the buy cialis online cheap ability to manipulate many cell-signalling pathways," DrOrth said"VPA0450 could be used as buy viagra online a valuable tool to remove this key phosphate to change membrane signalling in a cell model system, which would then allow us to study these pathways in more detail."

 

UT Southwestern Medical Center


IHE :: Your advertise here !

Sponsored links:

BIOtech 2013

May 8th-10th in Tokyo

buy viagra online forefront of iPS Cell Research / Regenerative Medicine at Asia's largest bio event" target="_blank" href="http://www.biotech-online.com/fileadmin/pdf/pdf_general/biotech_2013.pdf" onclick="javascript:urchinTracker ('/.external/http/www.biotech-online.com/fileadmin/pdf/pdf_general/biotech_2013.pdf'); ">

Explore the forefront of iPS Cell Research / Regenerative Medicine at Asia's largest bio event

CD133-specific MAb

A new antibody for cialis dosage the detection of human CD133 has been introduced

biotech-online.com

Hospital devices Medical devices

The online source of technology & product information for life scientist & bioentrepreneurs

E-newsflash: Details

Scientists pry new information from disease-causing, shellfish-borne bacterium



Researchers at UT Southwestern Medical Center have uncovered a key weapon in the molecular arsenal the infectious bacterium Vibrio parahaemolyticus (V. para) uses to kill cells and cause food poisoning in its human host.

Dr. Kim Orth, associate professor of molecular biology at UT Southwestern, said the new research on the ocean-dwelling bacterium is leading to greater insights into how it causes illness in humans while also providing a potential novel scientific tool for studying general cell biology in the laboratory.

Dr. Orth and her team found that the bacterial molecule VPA0450 plucks a group of atoms called a phosphate from a larger molecule in a host cell that is critical to holding the cell together. Without that phosphate, the host-cell membrane fails. The cell loses integrity and is efficiently destroyed during infection.

"From a microbiology point of view, understanding how VPA0450 manipulates a host cell is critical to understanding how V. para causes disease," said Chris Broberg, a UT Southwestern student in the molecular microbiology graduate program and lead author of the study.

Dr. Orth and her colleagues previously identified two other Vibrio proteins called VopQ and VopS, which also attack host cells via separate mechanisms. She said the new findings reinforce the notion that V. para kills a host cell through the combined efforts of several so-called effector proteins working together rather than through the actions of a single protein.

"In order to understand better the disease this bacterium causes, we need to characterise each effector’s activity, then determine how they work in concert," Dr. Orth said. "This latest paper puts our field closer to this goal.

Most people become infected by V. para by eating raw or undercooked shellfish, particularly oysters, according to the Centers for Disease Control and Prevention. The organism also can cause an infection in the skin when an open wound is exposed to warm sea water.

Dr. Orth’s research on V. para proteins has potential applications in other areas of cell biology. The particular phosphate that VPA0450 removes also is important to other host-cell proteins that control certain communication signals within and between cells, signals related to how cells grow and move, as well as how they maintain their structural integrity. As such, exploiting VPA0450’s unique abilities could prove to be a useful research tool. "Scientists have the ability to manipulate many cell-signalling pathways," Dr. Orth said. "VPA0450 could be used as a valuable tool to remove this key phosphate to change membrane signalling in a cell model system, which would then allow us to study these pathways in more detail."

 

UT Southwestern Medical Center


IHE :: Your advertise here !

Sponsored links: